14 research outputs found

    Multi-View Vision System for Laparoscopy Surgery.

    No full text
    International audienceThis paper deals with the development of a new generation of augmented laparoscopy system. We propose to equip a traditional endoscope, or a robotic endoscope holder, with a miniature stereovision device. The system includes two miniature high resolution CMOS cameras mounted around the endoscope as a pair of glasses that provides a global view of the abdominal cavity completing the traditional view. Each camera can reach a frame rate of 30 images/second with a resolution of 1600 _ 1200 pixels. A deployment, fixation and rapid extraction system of the proposed device through the trocar was designed and validated through preclinical experiments (testbench and human cadaver). The main benefit of the proposed system in the minimally invasive surgery domain is to provide simultaneously local/global views, and with perspectives in 3D reconstruction of the organ being treated

    Visual servoing of a robotic endoscope holder based on surgical instrument tracking

    No full text
    International audienceWe propose an image-based control for a roboticendoscope holder during laparoscopic surgery. Our aim is toprovide more comfort to the practitioner during surgery byautomatically positioning the endoscope at his request. To doso, we propose to maintain one or more instruments roughly atthe center of the laparoscopic image through different commandmodes. The originality of this method relies on the direct useof the endoscopic image and the absence of artificial markersadded to the instruments. The application is validated on a testbench with a commercial robotic endoscope holder

    Comparative evaluation of instrument segmentation and tracking methods in minimally invasive surgery

    Get PDF
    Intraoperative segmentation and tracking of minimally invasive instruments is a prerequisite for computer- and robotic-assisted surgery. Since additional hardware like tracking systems or the robot encoders are cumbersome and lack accuracy, surgical vision is evolving as promising techniques to segment and track the instruments using only the endoscopic images. However, what is missing so far are common image data sets for consistent evaluation and benchmarking of algorithms against each other. The paper presents a comparative validation study of different vision-based methods for instrument segmentation and tracking in the context of robotic as well as conventional laparoscopic surgery. The contribution of the paper is twofold: we introduce a comprehensive validation data set that was provided to the study participants and present the results of the comparative validation study. Based on the results of the validation study, we arrive at the conclusion that modern deep learning approaches outperform other methods in instrument segmentation tasks, but the results are still not perfect. Furthermore, we show that merging results from different methods actually significantly increases accuracy in comparison to the best stand-alone method. On the other hand, the results of the instrument tracking task show that this is still an open challenge, especially during challenging scenarios in conventional laparoscopic surgery

    Navigation augmentée d'informations de fluorescence pour la chirurgie laparoscopique robot-assistée

    No full text
    Laparoscopic surgery faithfully reproduce the principles of conventional surgery with minimal physical aggression.If this surgery appears to be very beneficial for the patient, it is a difficult surgery where the complexity of surgicalact is increased, compared with conventional surgery. This complexity is partly due to the manipulation of surgicalinstruments and viewing the surgical scene (including the restricted field of view of a conventional endoscope). Thedecisions of the surgeon could be improved by identifying critical or not visible areas of interest in the surgical scene.My research aimed to combine robotics, computer vision and fluorescence to provide an answer to these problems :fluorescence imaging provides additional visual information to assist the surgeon in determining areas to operate or tobe avoided (for example, visualization of the cystic duct during cholecystectomy). Robotics will provide the accuracyand efficiency of the surgeon’s gesture as well as a visualization and a "more intuitive" tracking of the surgical scene.The combination of these two technologies will help guide and secure the surgical gesture.A first part of this work consisted in extracting visual information in both imagingmodalities (laparoscopy/fluorescence).Localization methods for 2D/3D real-time of laparoscopic surgical instruments in the laparoscopic image and anatomicaltargets in the fluorescence image have been designed and developed. A second part consisted in the exploitationof the bimodal visual information for developing control laws for robotics endoscope holder and the instrument holder.Visual servoing controls of a robotic endoscope holder to track one or more instruments in laparoscopic image ora target of interest in the fluorescence image were implemented. In order to control a robotic instrument holder withthe visual information provided by the imaging system, a calibration method based on the use of 3D information of thelocalization of surgical instruments was also developed. This multimodal environment was evaluated quantitativelyon the test bench and on anatomical specimens.Ultimately this work will be integrated within lightweight robotic architectures, not rigidly linked, using comanipulationrobots with more sophisticated controls such as force feedback. Such an "increase" viewing capabilities andsurgeon’s action could help to optimize the management of the patient.La chirurgie laparoscopique reproduit fidèlement les principes de la chirurgie conventionnelle avec une agressioncorporelle minimale. Si cette chirurgie apparaît comme étant très avantageuse pour le patient, il s’agit d’une interventionchirurgicale difficile où la complexité du geste chirurgical est accrue, en comparaison avec la chirurgie conventionnelle.Cette complexité réside en partie dans la manipulation des instruments chirurgicaux et la visualisation dela scène chirurgicale (notamment le champ de visualisation restreint d’un endoscope classique). La prise de décisionsdu chirurgien pourrait être améliorée en identifiant des zones critiques ou d’intérêts non visibles dans la scènechirurgicale.Mes travaux de recherche visent à combiner la robotique, la vision par ordinateur et la fluorescence pour apporterune réponse à ces difficultés : l’imagerie de fluorescence fournira une information visuelle supplémentaire pour aiderle chirurgien dans la détermination des zones à opérer ou à éviter (par exemple, visualisation du canal cystique lorsd’une cholécystectomie). La robotique assurera la précision et l’efficience du geste du chirurgien ainsi qu’une visualisationet un suivi "plus intuitif" de la scène chirurgicale. L’association de ces deux technologies permettra de guideret sécuriser le geste chirurgical.Une première partie de ce travail a consisté en l’extraction d’informations visuelles dans les deux modalités d’imagerie(laparoscopie/fluorescence). Des méthodes de localisation 2D/3D en temps réel d’instruments chirurgicaux dansl’image laparoscopique et de cibles anatomiques dans l’image de fluorescence ont été conçues et développées.Une seconde partie a consisté en l’exploitation de l’information visuelle bimodale pour l’élaboration de lois de commandepour des robots porte-endoscope et porte-instrument. Des commandes par asservissement visuel d’un robotporte-endoscope pour suivre un ou plusieurs instruments dans l’image laparoscopique ou une cible d’intérêt dansl’image de fluorescence ont été mises en oeuvre.Dans l’objectif de pouvoir commander un robot porte-instrument, enfonction des informations visuelles fournies par le système d’imagerie, une méthode de calibrage basée sur l’exploitationde l’information 3D de la localisation d’instruments chirurgicaux a également été élaborée. Cet environnementmultimodal a été évalué quantitativement sur banc d’essai puis sur spécimens anatomiques.À terme ce travail pourra s’intégrer au sein d’architectures robotisées légères, non-rigidement liées, utilisant des robotsde comanipulation avec des commandes plus élaborées tel que le retour d’effort. Une telle "augmentation" descapacités de visualisation et d’action du chirurgien pourraient l’aider à optimiser la prise en charge de son patient

    Navigation augmentée d'informations de fluorescence pour la chirurgie laparoscopique robot-assistée

    No full text
    Laparoscopic surgery faithfully reproduce the principles of conventional surgery with minimal physical aggression.If this surgery appears to be very beneficial for the patient, it is a difficult surgery where the complexity of surgicalact is increased, compared with conventional surgery. This complexity is partly due to the manipulation of surgicalinstruments and viewing the surgical scene (including the restricted field of view of a conventional endoscope). Thedecisions of the surgeon could be improved by identifying critical or not visible areas of interest in the surgical scene.My research aimed to combine robotics, computer vision and fluorescence to provide an answer to these problems :fluorescence imaging provides additional visual information to assist the surgeon in determining areas to operate or tobe avoided (for example, visualization of the cystic duct during cholecystectomy). Robotics will provide the accuracyand efficiency of the surgeon’s gesture as well as a visualization and a "more intuitive" tracking of the surgical scene.The combination of these two technologies will help guide and secure the surgical gesture.A first part of this work consisted in extracting visual information in both imagingmodalities (laparoscopy/fluorescence).Localization methods for 2D/3D real-time of laparoscopic surgical instruments in the laparoscopic image and anatomicaltargets in the fluorescence image have been designed and developed. A second part consisted in the exploitationof the bimodal visual information for developing control laws for robotics endoscope holder and the instrument holder.Visual servoing controls of a robotic endoscope holder to track one or more instruments in laparoscopic image ora target of interest in the fluorescence image were implemented. In order to control a robotic instrument holder withthe visual information provided by the imaging system, a calibration method based on the use of 3D information of thelocalization of surgical instruments was also developed. This multimodal environment was evaluated quantitativelyon the test bench and on anatomical specimens.Ultimately this work will be integrated within lightweight robotic architectures, not rigidly linked, using comanipulationrobots with more sophisticated controls such as force feedback. Such an "increase" viewing capabilities andsurgeon’s action could help to optimize the management of the patient.La chirurgie laparoscopique reproduit fidèlement les principes de la chirurgie conventionnelle avec une agressioncorporelle minimale. Si cette chirurgie apparaît comme étant très avantageuse pour le patient, il s’agit d’une interventionchirurgicale difficile où la complexité du geste chirurgical est accrue, en comparaison avec la chirurgie conventionnelle.Cette complexité réside en partie dans la manipulation des instruments chirurgicaux et la visualisation dela scène chirurgicale (notamment le champ de visualisation restreint d’un endoscope classique). La prise de décisionsdu chirurgien pourrait être améliorée en identifiant des zones critiques ou d’intérêts non visibles dans la scènechirurgicale.Mes travaux de recherche visent à combiner la robotique, la vision par ordinateur et la fluorescence pour apporterune réponse à ces difficultés : l’imagerie de fluorescence fournira une information visuelle supplémentaire pour aiderle chirurgien dans la détermination des zones à opérer ou à éviter (par exemple, visualisation du canal cystique lorsd’une cholécystectomie). La robotique assurera la précision et l’efficience du geste du chirurgien ainsi qu’une visualisationet un suivi "plus intuitif" de la scène chirurgicale. L’association de ces deux technologies permettra de guideret sécuriser le geste chirurgical.Une première partie de ce travail a consisté en l’extraction d’informations visuelles dans les deux modalités d’imagerie(laparoscopie/fluorescence). Des méthodes de localisation 2D/3D en temps réel d’instruments chirurgicaux dansl’image laparoscopique et de cibles anatomiques dans l’image de fluorescence ont été conçues et développées.Une seconde partie a consisté en l’exploitation de l’information visuelle bimodale pour l’élaboration de lois de commandepour des robots porte-endoscope et porte-instrument. Des commandes par asservissement visuel d’un robotporte-endoscope pour suivre un ou plusieurs instruments dans l’image laparoscopique ou une cible d’intérêt dansl’image de fluorescence ont été mises en oeuvre.Dans l’objectif de pouvoir commander un robot porte-instrument, enfonction des informations visuelles fournies par le système d’imagerie, une méthode de calibrage basée sur l’exploitationde l’information 3D de la localisation d’instruments chirurgicaux a également été élaborée. Cet environnementmultimodal a été évalué quantitativement sur banc d’essai puis sur spécimens anatomiques.À terme ce travail pourra s’intégrer au sein d’architectures robotisées légères, non-rigidement liées, utilisant des robotsde comanipulation avec des commandes plus élaborées tel que le retour d’effort. Une telle "augmentation" descapacités de visualisation et d’action du chirurgien pourraient l’aider à optimiser la prise en charge de son patient

    Navigation augmented fluorescence informations for the laparoscopic surgeryrobot-assisted

    No full text
    La chirurgie laparoscopique reproduit fidèlement les principes de la chirurgie conventionnelle avec une agressioncorporelle minimale. Si cette chirurgie apparaît comme étant très avantageuse pour le patient, il s’agit d’une interventionchirurgicale difficile où la complexité du geste chirurgical est accrue, en comparaison avec la chirurgie conventionnelle.Cette complexité réside en partie dans la manipulation des instruments chirurgicaux et la visualisation dela scène chirurgicale (notamment le champ de visualisation restreint d’un endoscope classique). La prise de décisionsdu chirurgien pourrait être améliorée en identifiant des zones critiques ou d’intérêts non visibles dans la scènechirurgicale.Mes travaux de recherche visent à combiner la robotique, la vision par ordinateur et la fluorescence pour apporterune réponse à ces difficultés : l’imagerie de fluorescence fournira une information visuelle supplémentaire pour aiderle chirurgien dans la détermination des zones à opérer ou à éviter (par exemple, visualisation du canal cystique lorsd’une cholécystectomie). La robotique assurera la précision et l’efficience du geste du chirurgien ainsi qu’une visualisationet un suivi "plus intuitif" de la scène chirurgicale. L’association de ces deux technologies permettra de guideret sécuriser le geste chirurgical.Une première partie de ce travail a consisté en l’extraction d’informations visuelles dans les deux modalités d’imagerie(laparoscopie/fluorescence). Des méthodes de localisation 2D/3D en temps réel d’instruments chirurgicaux dansl’image laparoscopique et de cibles anatomiques dans l’image de fluorescence ont été conçues et développées.Une seconde partie a consisté en l’exploitation de l’information visuelle bimodale pour l’élaboration de lois de commandepour des robots porte-endoscope et porte-instrument. Des commandes par asservissement visuel d’un robotporte-endoscope pour suivre un ou plusieurs instruments dans l’image laparoscopique ou une cible d’intérêt dansl’image de fluorescence ont été mises en oeuvre.Dans l’objectif de pouvoir commander un robot porte-instrument, enfonction des informations visuelles fournies par le système d’imagerie, une méthode de calibrage basée sur l’exploitationde l’information 3D de la localisation d’instruments chirurgicaux a également été élaborée. Cet environnementmultimodal a été évalué quantitativement sur banc d’essai puis sur spécimens anatomiques.À terme ce travail pourra s’intégrer au sein d’architectures robotisées légères, non-rigidement liées, utilisant des robotsde comanipulation avec des commandes plus élaborées tel que le retour d’effort. Une telle "augmentation" descapacités de visualisation et d’action du chirurgien pourraient l’aider à optimiser la prise en charge de son patient.Laparoscopic surgery faithfully reproduce the principles of conventional surgery with minimal physical aggression.If this surgery appears to be very beneficial for the patient, it is a difficult surgery where the complexity of surgicalact is increased, compared with conventional surgery. This complexity is partly due to the manipulation of surgicalinstruments and viewing the surgical scene (including the restricted field of view of a conventional endoscope). Thedecisions of the surgeon could be improved by identifying critical or not visible areas of interest in the surgical scene.My research aimed to combine robotics, computer vision and fluorescence to provide an answer to these problems :fluorescence imaging provides additional visual information to assist the surgeon in determining areas to operate or tobe avoided (for example, visualization of the cystic duct during cholecystectomy). Robotics will provide the accuracyand efficiency of the surgeon’s gesture as well as a visualization and a "more intuitive" tracking of the surgical scene.The combination of these two technologies will help guide and secure the surgical gesture.A first part of this work consisted in extracting visual information in both imagingmodalities (laparoscopy/fluorescence).Localization methods for 2D/3D real-time of laparoscopic surgical instruments in the laparoscopic image and anatomicaltargets in the fluorescence image have been designed and developed. A second part consisted in the exploitationof the bimodal visual information for developing control laws for robotics endoscope holder and the instrument holder.Visual servoing controls of a robotic endoscope holder to track one or more instruments in laparoscopic image ora target of interest in the fluorescence image were implemented. In order to control a robotic instrument holder withthe visual information provided by the imaging system, a calibration method based on the use of 3D information of thelocalization of surgical instruments was also developed. This multimodal environment was evaluated quantitativelyon the test bench and on anatomical specimens.Ultimately this work will be integrated within lightweight robotic architectures, not rigidly linked, using comanipulationrobots with more sophisticated controls such as force feedback. Such an "increase" viewing capabilities andsurgeon’s action could help to optimize the management of the patient

    2D/3D Real-Time Tracking of Surgical Instruments Based on Endoscopic Image Processing

    No full text
    International audienceThis paper describes a simple and robust algorithm which permits to track surgical instruments without artificial markers in endoscopic images. Based on image processing, this algorithm can estimate the 2D/3D pose of all the instruments visible in the image, in real-time (30 Hz). The originality of the approach is based on the use of a Frangi filter for detecting edges and the tip of instruments. The accuracy of the instruments’ location in the image is evaluated using an extensive dataset (1500 images, 3 laparoscopic surgeries). Pose estimation of instruments in space is quantitatively evaluated on a test bench through comparison with the ground truth positioning provided by a calibrated robotic instrument holder. This method opens perspectives in the real-time control of surgical robots and the intra-operative recognition of surgical gestures

    Dispositif et procédé de détection automatique d’un outil chirurgical sur une image fournie par un système d'imagerie médicale

    No full text
    L'invention concerne un procédé de détection d'un outil chirurgical sur une première image comportant les étapes suivantes : mémoriser des paramètres de forme de l'outil chirurgical ; déterminer une deuxième image (I3) contenant des régions de pixels distinctes à partir de la première image par un premier traitement comprenant la segmentation de la première image ; déterminer des premières fenêtres (F), chaque première fenêtre entourant l'une des régions ; sélectionner au moins une deuxième fenêtre parmi les premières fenêtres à partir des paramètres de forme ; déterminer une troisième image à partir de la première image en appliquant à la première image un deuxième traitement mettant en œuvre l'algorithme de Frangi ; et déterminer des bords latéraux de l'outil chirurgical sur la partie de la troisième image contenue dans ladite deuxième fenêtr

    Dispositif et procédé de détection automatique d’un outil chirurgical sur une image fournie par un système d'imagerie médicale

    No full text
    L'invention concerne un procédé de détection d'un outil chirurgical sur une première image comportant les étapes suivantes : mémoriser des paramètres de forme de l'outil chirurgical ; déterminer une deuxième image (I3) contenant des régions de pixels distinctes à partir de la première image par un premier traitement comprenant la segmentation de la première image ; déterminer des premières fenêtres (F), chaque première fenêtre entourant l'une des régions ; sélectionner au moins une deuxième fenêtre parmi les premières fenêtres à partir des paramètres de forme ; déterminer une troisième image à partir de la première image en appliquant à la première image un deuxième traitement mettant en œuvre l'algorithme de Frangi ; et déterminer des bords latéraux de l'outil chirurgical sur la partie de la troisième image contenue dans ladite deuxième fenêtr

    Enhanced vision system for laparoscopic surgery.

    No full text
    International audienceLaparoscopic surgery offers benefits to the patients but poses new challenges to the surgeons, including a limited field of view. In this paper, we present an innovative vision system that can be combined with a traditional laparoscope, and provides the surgeon with a global view of the abdominal cavity, bringing him or her closer to open surgery conditions. We present our first experiments performed on a testbench mimicking a laparoscopic setup: they demonstrate an important time gain in performing a complex task consisting bringing a thread into the field of view of the laparoscope
    corecore